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Abstract. In this article, we introduce a command, cspa, that implements the
conditional superior predictive ability (CSPA) test developed in Li et al. (2021).
With the conditional performance of predictive methods measured nonparamet-
rically by the conditional expectation functions of their predictive losses, we test
the null hypothesis that a benchmark model weakly outperforms a collection of
competitors uniformly across the conditioning space. The proposed command can
be used to implement this test for both independent cross-sectional data and se-
rially dependent time-series data. Confidence sets for the most superior model
can be obtained by inverting the test, for which the cspa command also offers a
convenient implementation.
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1 Introduction

Making accurate predictions is a central task of data analysis. Economists in central
banks routinely update their forecasts on a broad range of macroeconomic indicators
to inform policy making. Investors in financial markets devote a tremendous amount
of effort to predict asset prices’ movements. Data analytics for various socioeconomic
activities has also simulated new generations of predictive models on the “micro” level
for firms, communities, households, and individuals.

In view of the evergrowing abundance of potentially good predictive methods, evalu-
ating their relative performance is evidently of great practical importance. Arguably the
most popular evaluation method in economic applications is the pseudo out-of-sample
Diebold–Mariano test (Diebold and Mariano (1995)) for the null hypothesis that the ex
post losses (e.g., the squared prediction error) of two predictive methods are equal in
expectation. Diebold and Mariano’s proposal is effectively a t-test, which may be im-
plemented by regressing the observed loss differential between the competing methods
on a constant term, and check whether the estimated intercept is significantly different
from zero. This can be easily done in Stata via [R] regress for independent data or,
more generally, [TS] newey for data with serial dependence.
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2 Conditional Evaluation of Predictive Models: The cspa Command

Since the Diebold–Mariano test is based on the unconditional average performance
of the competing predictions, it invariably “integrates out” the heterogeneity across
subsample periods (e.g., expansion or recession episodes) and/or sub-populations (e.g.,
income or age groups), and hence, may be too coarse for certain practical applications.
Unraveling the state- or characteristic-dependent relative performance among predictive
models naturally calls for a conditional evaluation approach.

In this article, we propose a new Stata command, cspa, which offers a convenient
implementation for the conditional superior predictive ability (CSPA) test recently pro-
posed by Li et al. (2021). The null hypothesis of interest states that the conditional
expected loss of a benchmark predictive model is no larger than those of the compet-
ing models uniformly across all conditioning states (specified by a conditioning variable
chosen a priori by the user). In this sense, the CSPA null hypothesis asserts that the
benchmark is a uniformly weakly dominating method among all predictive models un-
der consideration. “Passing” the test indicates that the benchmark method is likely to
perform well not only on average, but also across all sub-populations “sliced” by the
conditioning variable, which may be a macroeconomic cyclical indicator, a financial risk
measure, or an individual characteristic, chosen by the user depending on the empirical
context.

The main functionality of the proposed cspa command is to implement the CSPA
test for a given benchmark against a collection of competitors. A rejection indicates
that some competitor outperforms the benchmark over some conditioning states. A
non-rejection, on the other hand, suggests that the benchmark is weakly dominating.
Moreover, by rotating the benchmark role across all models, we may form the confidence
set for the most superior (CSMS) as the collection of all non-rejected benchmarks.
This operation can also be accomplished easily by calling the csms option. We shall
demonstrate how to carry out these inferential tasks in an empirical example on asset
volatility forecasting using a dataset from Li et al. (2021).

The remainder of this article is organized as follows. Section 2 provides a brief review
on the CSPA testing procedure and the underlying intuition. Section 3 documents the
syntax of the cspa command and available options. Section 4 demonstrates the key
functionalities of the proposed command in an empirical example.

2 The conditional evaluation method

This section provides a brief review of the CSPA test developed in Li et al. (2021).
Section 2.1 describes the setting. Section 2.2 details the CSPA testing procedure. To
simplify the discussion, we mainly focus on the time-series setting, with the understand-
ing that random samples with independent observations may be considered as a special
“time series” with no serial dependence.
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2.1 The setting and hypotheses of interest

Let (F †t )1≤t≤n denote the time series to be predicted. Correspondingly, we consider a se-
ries of benchmark predictions {F0,t}1≤t≤n, and a collection of J competing alternatives,
{Fj,t}1≤t≤n, 1 ≤ j ≤ J . The performance of these predictive methods is gauged by a

user-specified loss function L(·, ·), so that the loss for model j at period t is L(F †t , Fj,t).
Commonly used loss functions include the quadratic loss, absolute deviation loss, and
Stein’s loss. The performance of the benchmark method relative to the jth competing
alternative is thus measured by the loss differential series

Yj,t = L(F †t , Fj,t)− L(F †t , F0,t).

Its conditional mean function given a user-specified conditioning variable Xt is further
defined as

hj(x) ≡ E[Yj,t|Xt = x]. (1)

Note that hj(x) ≥ 0 indicates that the benchmark method is expected to (weakly)
outperform the jth competitor conditional on Xt = x.

The null hypothesis of the CSPA test asserts that

H0 : hj(x) ≥ 0, for all x ∈ X , 1 ≤ j ≤ J, (2)

where X is the support of Xt. Under the null hypothesis, the benchmark method out-
performs all competing alternatives uniformly across all conditioning states. Evidently,
by the law of iterated expectations, this also implies that the unconditional expected loss
of the benchmark is lower than those of the competing methods (i.e., E[Yj,t] ≥ 0). But
the CSPA null hypothesis is generally much more stringent than its unconditional coun-
terpart. As such, the (uniform) conditional dominance criterion may help the researcher
discriminate competing predictive methods that appear “unconditionally similar,” and
so, complements conventional evaluation methods such as the Diebold–Mariano test.

2.2 The testing procedure

We now detail how the cspa command implements the CSPA test in the background.
The first step is to nonparametrically estimate the conditional expectation functions of
the loss differentials (i.e., {hj(·) : 1 ≤ j ≤ J}) by running series regressions. Specifically,
let P (x) = (p1(x), . . . , pm(x))> be an m-dimensional vector of approximating basis
functions. For each j, we regress Yj,t on P (Xt) with the resulting regression coefficient
given by

b̂j = Q̂−1
(
n−1

n∑
t=1

P (Xt)Yj,t

)
where Q̂ = n−1

n∑
t=1

P (Xt)P (Xt)
>.

The nonparametric series estimator for hj(·) is then constructed as

ĥj(·) = P (·)>b̂j . (3)
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The underlying nonparametric inference theory requires the number of series terms
m → ∞ in large samples, so that the unknown conditional expectation functions can
be well approximated.

The current version of cspa employs Legendre polynomials to form the approxi-
mating functions P (Xt). An important property of the Legendre polynomials is that
they are orthogonal on the [−1, 1] interval with respect to the uniform distribution.
This orthogonality property helps mitigate the multicollinearity among series terms,
and hence, improves the numerical stability of the estimation procedure. Other types of
orthogonal series basis may be adopted to serve the same purpose as well, which is left
for future development. To better exploit the orthogonality of Legendre polynomials,
it is advisable (though not required in theory) to perform a preliminary transformation
on the conditioning variable Xt so as to make it approximately uniformly distributed
on the [−1, 1] interval; see the method option for available choices provided in cspa.

To carry out the test, it is crucial to account for the sampling variability of the
functional estimates ĥj(·). Let ûj,t = Yj,t−ĥj(Xt) be the residual from the jth regression
and collect them in a J-dimensional column vector ût. We estimate the joint variance-
covariance matrix for the series regression coefficients b̂j , 1 ≤ j ≤ J , using

Ω̂ ≡
(
IJ ⊗ Q̂

)−1
Â
(
IJ ⊗ Q̂

)−1
,

where IJ denotes the J × J identity matrix, ⊗ is the Kronecker product, and Â is
a Newey–West estimator for the “long-run” covariance matrix of the Jm-dimensional
vector ût ⊗ P (Xt). The lag parameter for the Newey–West estimator may be set via
the lag(#) option in cspa; also see [TS] newey. Note that, if it is known a priori that
there is no serial correlation in the data (e.g., when the observations are assumed to be
independent), one may set lag(0), which is also the default option in cspa. We further

partition Ω̂ into J × J blocks of m ×m sub-matrices. The standard error function of
ĥj(·) is then estimated as

σ̂j(x) ≡ (P (x)>Ω̂(j, j)P (x))1/2,

where Ω̂(j, j) is the (j, j) block extracted from the aforementioned partition of Ω̂.

At a significance level α, the rejection decision of the CSPA test is determined as
follows.

Step 1. Simulate a Jm-dimensional normal random vector (ξ∗>1 , . . . , ξ∗>J ) ∼ N (0, Ω̂),
where each ξ∗j is m-dimensional. Set t̂∗j (x) ≡ P (x)>ξ∗j /σ̂j(x).

Step 2. Repeat step 1 many times. For some constant z > 0, define K̂ as the 1 −
z/ log(n)-quantile of max1≤j≤J supx∈X t̂

∗
j (x) in the simulated sample and then set

V̂ ≡
{

(j, x) : ĥj(x) ≤ min
1≤j≤J

inf
x∈X

(
ĥj(x) + n−1/2K̂σ̂j(x)

)
+ 2n−1/2K̂σ̂j(x)

}
. (4)

The default value of z is 0.1, which may be modified by calling the ais(#) option.
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Step 3. Set k̂1−α as the (1−α)-quantile of sup(j,x)∈V̂ t̂
∗
j (x). Reject the null hypothesis

(2) if and only if

η̂1−α ≡ min
1≤j≤J

inf
x∈X

[
ĥj(x) + n−1/2k̂1−ασ̂j(x)

]
< 0. (5)

It is instructive to clarify some intuition underlying this testing procedure. The set
V̂ described in step 2 implements an adaptive inequality selection (corresponding to the

ais(#) option). It can be shown that, with probability approaching 1, V̂ contains all
(j, x)’s that minimize hj(x). From (2), it is easy to see that whether the null hypothesis
holds or not is solely determined by the functions’ values at these extreme points. The
selection step focuses the test on the relevant conditioning region, and so, improves its
power. We also note that the rejection decision described in (5) naturally admits a

graphical representation. Indeed, the functional estimates ĥj(·) + n−1/2k̂1−ασ̂j(·) are

1 − α upper confidence bounds for hj(·) uniformly over the selected set V̂ . If some
of these upper bounds dip below zero over some part of the conditioning space, we
interpret it as significant statistical evidence against the null hypothesis (i.e., hj(x) ≥ 0
for all (j, x)), which leads to a formal rejection.

For some applications, it may be more natural to treat all competing predictive
methods “symmetrically,” rather than picking a particular one as the benchmark. In this
situation, one may naturally rotate the benchmark role across all competing methods,
and then collect all non-rejected benchmarks in a set

M̂1−α = {0 ≤ j ≤ J : the α-level CSPA test

with method j as the benchmark does not reject}.

This operation is formally an inversion of the CSPA test and, by the duality between
tests and confidence sets, M̂1−α is a 1 − α level confidence set for the most superior
model (which has the lowest conditional expected loss uniformly across all conditioning
states), namely, the CSMS. The implementation can be easily carried out via cspa by
calling the csms option.

3 The cspa command

This section documents the syntax and functionalities of the cspa command. The
command requires the moremata package, which may be installed in command line via
ssc install moremata.

3.1 Syntax

The Stata syntax of the cspa command is as follows:

cspa condvar benchmark competitors
[

if
] [

in
] [

, ais(#) lag(#) m(#)

method(transtype) siglevel(#) ngrid(#) mc(#) triml(#) trimr(#) csms
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plot plotu detail excel
]

where condvar is the conditioning variable, benchmark is the loss of the benchmark, and
competitors is a list of loss variables associated with the competitors.

3.2 Options

ais(#) specifies the degree of adaptive inequality selection. The default is ais(0.1).
The selection may be disabled by setting ais(0).

lag(#) specifies the number of lags for computing the Newey–West estimator Ân. The
default is lag(0).

m(#) specifies the number of Legendre polynomial terms used in series estimation. The
default is m(5).

method(transtype) specifies the transformation implemented on the conditioning vari-
able. The main purpose of doing so is to make the regressors approximately or-
thogonal, which generally improves the numerical stability of the series regression,
especially when a large number of series terms are included. The approximating
functions are Legendre polynomials of the transformed variable. The current ver-
sion supports the following transformation methods, with method(rank) being the
default.

• none: no transformation;

• affine: affine transformation x 7→ 2(x−min(x))
max(x)−min(x) − 1;

• normal: normal transformation x 7→ 2Φ[(x − x)/σ] − 1, where x and σ are the
sample mean and standard deviation of x, and Φ is the cumulative distribution
function of the standard normal distribution;

• lognormal: log-normal transformation x 7→ 2Φ[(log x− log x)/Σ]− 1, where log x
and Σ are the sample mean and standard deviation of log x, and Φ is the cumu-
lative distribution function of the standard normal distribution;

• rank: x 7→ 2q(x)− 1, where q(x) is the empirical quantile of x.

siglevel(#) specifies the significance level (in percentage) for the CSPA test. The
default is siglevel(5).

ngrid(#) specifies the number of grid points used for discretizing the support of the
conditioning state variable. The default is ngrid(1000).

triml(#) sets the left limit of the conditioning region X to be the # empirical quantile
of condvar. The default is triml(0).

trimr(#) sets the right limit of the conditioning region X to be the 1 −# empirical
quantile of condvar. The default is trimr(0).
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mc(#) specifies the number of Monte Carlo simulations used to construct the distribu-
tion of the critical values. The default is mc(5000).

csms calculates the confidence set of the most superior (CSMS) by rotating the bench-
mark role across all competing methods.

plot produces plots of the lower envelope of estimated conditional mean functions of
loss differentials and its upper confidence bound, with the transformed conditioning
variable plotted on the horizontal axis.

plotu produces plots of the lower envelope of estimated conditional mean functions
of loss differentials and its upper confidence bound, with the original conditioning
variable plotted on the horizontal axis.

detail adds the estimated conditional mean functions of loss differentials onto the plot
generated by plot or plotu.

excel creates an Excel file that contains the requisite estimates for producing the plots
generated by plot or plotu.

3.3 Stored results

The cspa command stores the following results in e():

Scalars
e(N) number of observations
e(ts) CSPA test statistic
e(pvalue) p-value of the CSPA test

Macros
e(condvar) name of the conditioning variable
e(loss) name of the loss variables
e(method) transformation method
e(cmd) cspa

Matrices
e(xgrid) grid points of the conditioning variable
e(h hat) estimates of the conditional expected loss differentials
e(lowerenvelope) estimate of the lower envelope of the conditional expected loss

differentials
e(cb) estimate of the confidence bound

4 An empirical example

4.1 Data description

Our real-data demonstration is based a dataset from the empirical study of Li et al.
(2021). The rv.dta dataset contains a times series of daily realized volatilities of the
Boeing Company (BA), computed as the sum of squared 5-minute returns within regular
trading hours, and six time series of one-day-ahead volatility forecasts that are generated
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by AR(1), AR(22), AR(22) with Lasso selection, the HAR model of Corsi (2009), the
HARQ model developed in Bollerslev et al. (2016), and an ARFIMA model, respectively.
These forecasts are formed under a rolling-window scheme with 1, 000 daily observations,
and the evaluation sample ranges from May 2001 to December 2013, resulting in 3, 180
daily forecasts. We refer the reader to Li et al. (2021) for details on their constructions.
The dataset also contains a time series of lagged CBOE volatility index (VIX), which
shall be used as the conditioning variable Xt for conducting the CSPA test.

Following Li et al. (2021), we use Stein’s loss function to measure the performance
of the forecasts, that is,

L(F †t , Fj,t) =
Fj,t

F †t
− log

(Fj,t
F †t

)
− 1.

This is a natural choice in view of the fact that volatility is a scale parameter, and
Stein’s loss is commonly used in the study of scale problems. The losses of the six
volatility forecasts are then generated as follows.

. *** Load Data ***

. use "rv.dta", clear

.

. *** Calculate Loss ***

. gen ar1 = (rv_ar1/true) - log((rv_ar1/true) ) - 1

. gen ar22 = (rv_ar22/true) - log((rv_ar22/true) ) - 1

. gen ar22lasso = (rv_ar22lasso/true) - log((rv_ar22lasso/true) ) - 1

. gen har = (rv_har/true) - log((rv_har/true) ) - 1

. gen harq = (rv_harq/true) - log((rv_harq/true) ) - 1

. gen arfima = (rv_arfima/true) - log((rv_arfima/true) ) - 1

4.2 One-versus-one CSPA test

We illustrate the most basic usage of the cspa command by conducting a one-versus-
one conditional evaluation for two competing models: AR(1) and HAR. Specifically,
we perform the CSPA test with one of them as the benchmark and the other as the
competitor (so J = 1). The tests are implemented as follows.

. cspa vix ar1 har, lag(11) plot

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|

ar1 -0.1029 (reject) 0.0002

. cspa vix har ar1, lag(11) plot

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|
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har 0.0402 (non-reject) 0.9998

The output table of cspa reports the test statistic η̂1−α at the user-specified sig-
nificance level α, which by default is 5%. The null hypothesis that the benchmark
uniformly weakly dominates the competitor is rejected when η̂1−α < 0. The table also
reports the p-value of the test. Looking at the tables above, we see that the CSPA null
hypothesis with AR(1) being the benchmark is strongly rejected, but the test does not
reject the CSPA null for HAR at any conventional significance level, suggesting that
HAR is the superior predictive method.

With the plot option turned on, cspa also plots the estimated conditional ex-
pected loss differential function ĥ1(·) along with the upper confidence bound ĥ1(·) +

n−1/2k̂1−ασ̂1(·) as shown in Figure 1. Recall that a negative loss differential indicates
that the benchmark underperforms the competitor, and vice versa. Moreover, the CSPA
test rejects the null hypothesis if the upper confidence bound dips below zero over some
part of the conditioning space. From the left panel of Figure 1, we see that AR(1)
actually underperforms HAR over the entire conditioning space with high statistical
significance. Meanwhile, the upper confidence bound plotted on the right panel is al-
ways above zero, which is consistent with the fact that the CSPA test does not reject
the null hypothesis that HAR uniformly weakly dominates AR(1).
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Figure 1: Diagnostic plots for one-versus-one CSPA tests.

The results presented above are generated under the default setting of cspa, except
that we set the Newey–West lag parameter at lag(11) to account for serial dependence
following Li et al. (2021). The significance level is α = 5%, which may be modified via
the siglevel(#) option. By default, the series basis consists of m = 5 series terms
(i.e., m(5)), corresponding to a fourth-order Legendre polynomial. In addition, the
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conditioning variable vix is transformed onto the [−1, 1] interval via the rank trans-
formation (i.e., method(rank)). Robustness checks with respect to these choices can
be conveniently implemented by modifying the corresponding options, as illustrated in
Section 4.5 below.

4.3 One-versus-all CSPA test

We next demonstrate how to implement the CSPA test with multiple competitors.
Recall that the rv.dta dataset contains six competing volatility forecasts. We may
thus perform one-versus-all CSPA tests with one model as the benchmark and all the
other five models as competitors, corresponding to J = 5. Under the null hypothesis,
the benchmark model weakly dominates all the others uniformly across the conditioning
space spanned by the VIX. The following command implements such a test with HAR
being the benchmark.

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) plot

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|

har -0.0094 (reject) 0.0002

From the table, we see that the CSPA null hypothesis for the HAR benchmark is
strongly rejected. Although the one-versus-one test presented in Section 4.2 suggests
that HAR outperforms AR(1), the more stringent one-versus-all test reveals that HAR
is no longer uniformly superior once additional competitors join the competition.

For comparison, we further implement the test for the HARQ benchmark as follows.

. cspa vix harq ar1 ar22 ar22lasso har arfima, lag(11) plot

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|

harq 0.0053 (non-reject) 0.6712

Here, we see that the CSPA null hypothesis cannot be rejected at any conventional
significance level, offering formal statistical evidence for HARQ’s superiority relative to
the other competitors across conditioning states.

In the present setting with multiple competitors, the plot option draws the esti-
mated lower envelope function min1≤j≤J ĥj(·), which depicts the worst-case relative
performance of the benchmark (in comparison to the “toughest” competitor) across the

different conditioning states. The associated upper confidence bound min1≤j≤J [ĥj(x)+

n−1/2k̂1−ασ̂j(·)] is also plotted; if this bound ever falls below zero, the null hypothesis
is rejected.
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The left (resp. right) panel of Figure 2 shows the plots associated with the HAR
(resp. HARQ) benchmark. From the left panel, we see that the lower envelope function
is always below zero, suggesting that at every conditioning state the HAR benchmark is
outperformed by some competitor. The upper confidence bound dips below zero over the
low-VIX region, which explains the CSPA test’s rejection decision. On the other hand,
we see from the right panel that the lower envelope function for the HARQ benchmark
is generally “more positive,” indicating its better relative performance. The associated
upper confidence bound is always above zero, which is why the null hypothesis is not
rejected for HARQ.
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Figure 2: Diagnostic plots for one-versus-all CSPA tests.

Note that for the one-versus-all test, the plot option only draws the lower envelope
function and its upper confidence bound, which concisely summarize the information
from all J functional estimates. That noted, it may be useful for diagnostic purpose
to also examine the individual ĥj(·) estimates of conditional expected loss differentials.
Their plots can be added by further calling the detail option, as illustrated in Figure 3.
In the present example, the detail option draws five curves for ĥj(·), 1 ≤ j ≤ 5, though
parts of these curves are overlaid by the lower envelope function. The left panel of Figure
3 reveals that, although HAR does not pass the CSPA test, its estimated conditional
expected loss is lower than three competitors as evidenced by the three ĥj(·) curves
above zero; but it is “beaten” by the other two competitors across all conditioning
states, which in turn form the lower envelope. Meanwhile, it is interesting to note from
the right panel that the lower envelope for the HARQ benchmark coincides with one
particular ĥj(·) curve (overlaid by the lower envelope), which is associated with the
ARFIMA model.
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Figure 3: Detailed diagnostic plots for one-versus-all CSPA tests.

4.4 Confidence set for the most superior

As discussed in Section 2.2, the CSMS may be constructed by collecting all benchmarks
that are not rejected by the CSPA test. In particular, the one-versus-all tests performed
in Section 4.3 suggest that at the 95% confidence level, HARQ belongs to the CSMS,
but HAR does not. We may further implement the test for the other benchmarks in
order to decide whether they should be included in the CSMS or not.

The cspa command offers a more compact way to accomplish this task. With the
csms option turned on, the command will automatically perform the requisite tests by
rotating the benchmark role across all competing models, as shown below.

. cspa vix ar1 ar22 ar22lasso har harq arfima, lag(11) csms

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|

ar1 -0.1160 (reject) 0.0002

ar22 -0.0173 (reject) 0.0002

ar22lasso -0.0344 (reject) 0.0002

har -0.0095 (reject) 0.0002

harq 0.0054 (non-reject) 0.6636

arfima 0.0058 (non-reject) 0.7906

The 95% CSMS = {harq, arfima}.



J. Li, Z. Liao, R. Quaedvlieg, and W. Zhou 13

Here, the output table reports the CSPA test statistics and the associated p-values
for all six one-versus-all tests with different benchmarks. It also reports the CSMS, which
in the current example consists of the HARQ and ARFIMA models. Note that when
csms in active, it is unnecessary to distinguish benchmark from competitors, because all
models under consideration are treated in a symmetric manner.

4.5 Options

We highlight a few options that are more likely to be useful in typical empirical appli-
cations. For brevity, the illustration below focuses on the one-versus-all CSPA test for
the HAR benchmark. Recall from Section 4.3 that the null hypothesis is rejected when
the testing procedure is implemented under cspa’s default setting. Our goal here is to
perform some robustness checks with respect to this choice.

We first consider the number of series terms m, which is 5 by default. We may
change it to 4, 6, 8, or 10 by modifying the m(#) option as shown below. The null
hypothesis is still strongly rejected in all these settings.

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) m(4)

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|

har -0.0101 (reject) 0.0002

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) m(6)

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|

har -0.0092 (reject) 0.0002

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) m(8)

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|

har -0.0088 (reject) 0.0002

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) m(10)

Transformation on vix: Rank.

Benchmark CSPA Test (5%) P>|t|

har -0.0086 (reject) 0.0002

Next, we recall that under the default setting, the approximating functions are
formed as Legendre polynomials of the rank-transformed vix. The purpose of using the
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rank transformation is to make the conditioning variable approximately uniformly dis-
tributed on [−1, 1], which helps reduce the multicolinearity among the series regressors.
We may also employ the other types of transformations by modifying the method option.
Since the distribution of VIX is close to be log-normal, method(lognormal) is a natural
choice for this task. From the implementation below, we see that this modification does
not affect the rejection decision of the CSPA test.

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) method(lognormal)

Transformation on vix: Lognormal.

Benchmark CSPA Test (5%) P>|t|

har -0.0089 (reject) 0.0002

Finally, we note that the diagnostic figures generated by the plot option are plot-
ted on the transformed scale over the [−1, 1] interval. Alternatively, we may also set
the horizontal axis to the original untransformed scale by using the plotu option. To
clarify, the only effect of switching from plot to plotu is to compress/stretch the plot-
ted curves along the horizontal axis, resulting in an alternative graphical presentation.
The underlying testing results are completely unchanged. A concrete demonstration is
given below, with the new plots displayed on Figure 4. From the figure, we see that the
statistical evidence against the null hypothesis mainly stems from the subregion with
the VIX below 25%. We also note that the gap between the confidence bound and non-
parametric estimate is fairly wide when the VIX is, say, above 50%. This is because the
effective sample size for the local estimation on this region is relatively small, resulting
in imprecise nonparametric estimates. This is also why the corresponding segment is
“compressed” under the rank-transformed scale as previously shown on the left panel
of Figure 2.

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) method(lognormal)

Transformation on vix: Lognormal.

Benchmark CSPA Test (5%) P>|t|

har -0.0089 (reject) 0.0002
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Figure 4: Diagnostic plot for the one-versus-all CSPA test generated by plotu.
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