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Abstract—High-resolution large-scale urban traffic speed es-
timation is vital for intelligent traffic management and urban
planning. However, single-source data from commonly used
sources like cameras, loop detectors, or onboard devices exhibit
limitations due to uneven distribution and significant noise,
especially in large-scale urban areas. Consequently, existing
approaches relying on these single-source data often yield low-
resolution and biased estimations. In this study, we take the first
attempt to leverage mobile pedestrian data and car navigation
data for multi-source fusion, proposing a model to achieve high-
resolution urban traffic speed estimation in large-scale areas.
The key questions are how to obtain and utilize relatively
static roadside pedestrian crowd sensing data to characterize
the speed of moving vehicles, and how to design multi-source
heterogeneous data fusion framework to improve the overall es-
timation performance. Specifically, a meta-learning-based matrix
decomposition algorithm is first proposed to impute the missing
values adaptively considering history speed data. After obtaining
the imputed data, we utilize the self-view speed aggregation
algorithm learning from complete spatial information to correct
the imputed values. Subsequently, a multi-view speed aggregation
algorithm is proposed to fuse multi-source data for tracking ac-
tual road conditions which improves road coverage. We evaluated
our model with real-world datasets collected from more than
500,000 smartphones in Wenzhou, China. Experimental results
show that the proposed model outperforms the state-of-the-art
approaches by 7.48% and 6.99% in MAPE on missing data
imputation and multi-source data fusion models, respectively.

Index Terms—Traffic estimation, spatialtemporal data, crowd-
sensing, data imputation, data fusion

I. INTRODUCTION

H IGH-resolution, large-scale urban traffic speed estima-
tion plays a critical role for the development of intelli-

gent transportation systems. An exhaustive traffic estimation
strategy is essential for improving traffic planning and man-
agement [1], facilitating rapid detection of traffic incidents [2],
and enabling accurate control of traffic signals [3].

Traditional methods of traffic speed estimation, including
loop detectors [4], Bluetooth scanners [5], and video cameras
[6], have been characterized by their coarse-grained nature,
relying primarily on a limited number of dedicated traffic
sensing devices strategically placed within confined areas.
Evidently, such methods pose significant challenges for fine-
grained traffic estimation.

In recent years, mobile phones have become an indis-
pensable tool for navigation [7]. As individuals interact with
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mapping or ride-hailing applications, their geographical coor-
dinates are captured by providers, yielding an extensive pool
of mobile navigation data. The data can be exploited for traffic
monitoring and sensing, and has been extensively utilized
in traffic state estimation studies [8] [9]. Mobile navigation
data is known for its expansive coverage and cost-efficiency.
It presents a pronounced divergence from conventional sens-
ing devices, which are generally installed along a restricted
number of principal thoroughfares and are associated with
significant installation expenses. Regrettably, mobile naviga-
tion data fail to provide satisfactory coverage for all road
types, presenting higher record densities in hotspots while
sparse records in suburban areas [10]. The real-world road
network is characterized by a small proportion of hotspots road
segments and a majority of less-traveled roads. To compensate
this, there is an urgent need for developing advanced traffic
speed estimation methodologies that encompass all road types
within a city, including suburban and narrow roads, rather than
focusing exclusively on main thoroughfares, which facilitates
a more comprehensive understanding of the urban traffic
conditions.
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Fig. 1. Multi-source crowdsensing data: (a) Mobile navigation data, (b)
Mobile pedestrian data.

In addition to mobile navigation data for navigational
purposes, we have noted the widespread adoption of other
location-based services by roadside pedestrians [11], includ-
ing social networking (Weibo, Instagram) and local lifestyle
service (Meituan, Yelp) applications, among others. Certain
smartphones may receive nearby WiFi signals to enhance
localization accuracy while utilizing these services. As a
result, the upload information comprises the user’s current
location and a list of concurrently scanned WiFi networks,
some of which originate from nearby vehicle equipment. Fig.
1 depicts the crowdsensing process that randomly accumulates
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Fig. 2. Comparison of spatial distribution of road sections with different types
of data.

a substantial volume of data, termed mobile pedestrian data.
This data facilitates the estimation of vehicle positions and
speeds by sifting through vehicles’ WiFi signals using existing
databases. Mobile pedestrian data offers a cost-efficient solu-
tion without extra sensing devices for broadening the coverage
and enhancing the accuracy of urban traffic speed estimations.
As demonstrated in Fig.2, a comparison of the spatial distri-
bution of road sections utilizing different data types reveals
that mobile pedestrian data exhibit an expanded coverage
of pathways, effectively augmenting mobile navigation data.
Therefore, the integration of these two data types enhances the
coverage and effectiveness for estimation.

This paper is dedicated to the integration of mobile pedes-
trian and mobile phone navigation data for precise, high-
resolution traffic speed estimation. To the best of our knowl-
edge, this work represents the first endeavor to leverage the
ubiquitous mobile pedestrian data, gathered through location-
based services in smartphone applications, for road state
sensing. Nevertheless, integrating these multi-source data to
estimate traffic speed presents multiple challenges. First, the
sampling location and rate are inherently uncontrollable, re-
sulting in uneven distribution of road data with location
and time slots, i.e. data missing in many locations, making
it difficult to capture genuine traffic patterns. Second, the
integration of multi-source data, inherently accompanied by
noise and deviation, poses significant challenges. For instance,
mobile phone navigation reports inherently include bias and
noise [12]. Similarly, mobile pedestrian data exhibit a clear
deviation between roadside pedestrians and passing vehicles,
making accurate vehicle position determination more difficult.
A straightforward combination of these data sources could
potentially amplify estimation inaccuracies.

To address these challenges, we propose an innovative
framework combining meta-learning with crowdsensing data
fusion for precise, high-resolution traffic speed estimation. Our
framework integrates both mobile navigation and pedestrian
data. Initially, we use a map-matching algorithm to align each
record with corresponding road segment. Next, due to severe
initial data missing, we deploy a meta-learning-based matrix
decomposition module to impute the imbalanced speed data
from various road segments, especially in the considreation of
time dimension. This is achieved by calculating a weighted
matrix from historical data, where weights are automatically
assigned based on the historical data’s significance. Conse-
quently, this method obviates the need for reliance on inac-

curate fixed prior knowledge [13] or inefficient grid search
[14]. After obtaining the imputed data, we utilize the complete
spatial information to correct the imputed values. Furthermore,
we introduce a speed aggregation module that integrates the
multi-view imputed data, deriving the final estimation based
on spatial-temporal correlations.

The key contributions of this paper are summarized as
follows:

• We have innovatively integrated mobile pedestrian data
for traffic speed estimation. By combining mobile pedes-
trian data, obtained from roadside pedestrians’ accidental
scanning of vehicle WiFi signals, with mobile phone nav-
igation data, we advance the concept of high-resolution,
accurate traffic speed estimation.

• A novel framework is proposed, which includes a meta-
learning-based matrix decomposition algorithm and a
self-view speed aggregation algorithm to enhance the
spatial-temporal coverage. Further, a multi-view speed
aggregation module mitigate the impact of data noise and
deviation.

The rest of the paper is organized as follows: Section II
provides a comprehensive review of related work and Section
III introduces the datasets pertinent to our research. In Section
IV, we present the methodology and outline our model. Section
V discusses the experimental setup and presents the results.
Finally, Section VI concludes the paper and highlights avenues
for future research.

II. RELATED WORKS

A. Traffic Speed Estimation

Traffic speed estimation is important in intelligent trans-
portation system. As more traffic sensing devices are installed,
more data have recently become available [15] [16]. Tradition-
ally, traffic estimation mainly rely on various fixed-position
road sensors. Loop detectors are primarily employed for col-
lecting traffic count data at fixed positions of a road network.
Coifman et al. [17] estimation traffic speed estimation from
freeway single-loop detectors. However, the loop detectors
are sparsely distributed on the road due to high installation
and maintenance costs. Traffic sensing devices have been
developed in recent years due to their relatively straightforward
installation when compared to loop detectors [18]. Yang et
al. [19] developed a vehicle counting, identification and speed
estimation system utilizing RFID backscatter signal. However,
there are few vehicles equipped with RFID and the road
coverage is still low.

Recently, traffic sensor data such as GPS probe data is
widely used. Liu et al. [20] realized traffic speed forecasting
for segment network with sparse taxi trajectory data. Kan et
al. [21] examined individual exposures to traffic congestion
during various types of trips by using taxi GPS trajectory
and POI datasets. Sun et al. [22] identified important intrinsic
and extrinsic features that impact the bus speed using bus
GPS data. Despite the taxi GPS data and bus GPS data have
been extensively used, they need specific companies to install
equipment for collection.
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Fig. 3. Daily spatial coverage at 8:00 AM. (a) Initial road network. (b) Covered areas are derived from mobile navigation data, where blue sections represent
the roads being passed. (c) Covered areas with mobile pedestrian data where blue sections represent the roads being passed. (d) Amplified areas in the red
box in (b). (e) Amplified areas in the red box in (c). (f) Covered areas after data fusion where the red section represents independent sections in a single
data source.

Nowadays, mobile GPS data is easy to collect and have
been increasingly used [23] [24]. Dong et al. [22] presented
a traffic speed estimation method based on longest common
subsequence. Huang et al. [21] proposed a novel human
mobility model that combines the advantages of mobile phone
signaling data and urban transportation data. Bar-Gera et al.
[25] examined the performance of a new operational system
for measuring traffic speeds and travel times which is based
on information from a cellular phone service provider.

B. Data Fusion

The limited representation ability of the single data source
restricts its accuracy and coverage in large-scale areas. Some
studies have combined multi-source data for traffic state es-
timation. Generally, data fusion methods can be divided into
three categories, statistical methods, probabilistic methods, and
neural network methods [26].

Statistical approaches include the weighted average method,
correlation analysis, multivariate statistical analysis, and so on.
Among them, the arithmetic mean method is the simplest for
data fusion. Zhu et al. [27] integrated mobile phone network
data, inductive loop detector data, and bus-based GPS data by
a weighted mean approach in which specific weights such as
the inverse of the mean square error (MSE) can be assigned
to the various data. Probability methods are usually based on
rigorous theories, for example, Kalman filter is mainly used
to fuse dynamic multi-source data with noise and Bayesian
estimation can produce the probability of a single data source
by adopting the mathematical Bayes theorem of probability
rule to combine information [28]. Wang et al. [1] introduced
the Dirichlet process Gaussian mixture model to the genera-
tion of the mixed traffic-speed distribution to simultaneously
combine taxi GPS data, bus GPS data, and mobile phone
GPS data. Lin et al. [29] introduced the data fusion method
using evidence theory based on the confidence tensor, which
reduced the phenomenon of privacy disclosure and ensured

the quality of data. The neural network has been proved to
be able to extract features and has become popular in various
traffic applications. Kuang et al. [30] combined the Resnet
model with the TCN model to predict traffic volume based
on multi-source GPS trajectory data containing the car data
coming from the Didi Taxi Platform and the bus data. Peng
et al. [31] proposed a dynamic graph recurrent convolutional
neural network that generates traffic flow forecasting using the
historical subway, taxi, and bus data.

Generally, data fusion methods are promising for traffic state
estimation problems. However, several critical questions, e.g.,
the effective fusion of data with noise, the complete extraction
of correlations within datasets, which remain unsolved.

III. PRELIMINARY

A. Geographic Information Data

The geographic information data of the road network uti-
lized in this study is collected from the central districts of
Wenzhou, Zhejiang Province, China. The data is sourced from
OpenStreetMap (OSM) 1. The road network comprises 62851
road segments and 25449 intersections in which the name,
type, and length of each road are recorded.

B. Crowdsensing Data

The anonymous implicit crowdsensing data used in this
article is provided by Westlake Institute for Data Intelligence
2, which is collected by crowdsensing platforms of location-
based services providers embedding on location-based service
from March 21, 2020, to March 28, 2020. The data collection
is authorized by anonymization smartphone users and uncon-
strained without infringing users’ privacy and smartphone bat-
tery. Note that the frequency of uploading varies significantly

1www.openstreetmap.org
2https://www.widi.org.cn/
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TABLE I. Crowdsensing dataset.

Variable name Description
Gid User’s id

Timestamp User reporting time
Lon User’s longitude
Lat User’s latitude

App list List of Apps
WiFi list List of scanned WiFi
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Fig. 4. The distribution of the number of smartphones scanning vehicle in
mobile pedestrian data.

among smartphone users, spanning from seconds to minutes.
Each record of data ri contains six properties: user-id ri,u,
longitude ri,λ, latitude ri,φ, timestamp ri,t, APP usage list
ri,lA and scanned WiFi list ri,lW , which are listed in Table I.

The mobile navigation data is sourced from commonly used
navigation application such as Amap3 and DiDi4, installed on
smartphones. To procure this data, we filtered the application
usage lists in the raw data.

On the other hand, the mobile pedestrian data is gathered
when roadside pedestrians incidentally scanned vehicle WiFi
signals with their smartphones. This data collection process
involves filtering the scanned WiFi lists in the raw data.
Notably, roadside pedestrians can be considered as quasi-static
sensors along the road, given their relatively slow movement.

The distribution reflecting the frequency of smartphones
scanning vehicles in the mobile pedestrian dataset is depicted
in Fig. 4. Ordinarily, the WiFi signal of a vehicle during transit
is detected by approximately five smartphones belonging to
roadside pedestrians. As a result, by harnessing the records
from these pedestrians, we can effectively estimate the trajec-
tory information of the vehicles.

It should be noted that the distribution of records in both
mobile navigation and pedestrian data varies daily, as illus-
trated in Fig. 5(a). Specifically, navigation data exhibit a
higher number of records during off-peak times, while there
are more pedestrian data during rush hours but very little data
during off-peak times. Besides, as illustrated in Fig. 5(b), the
temporal pattern of the two types of data also exhibits notable
differences. The time skip distribution of mobile navigation

3https://www.amap.com/
4https://www.didiglobal.com/

entries is predominantly concentrated around specific values,
whereas the pedestrian dataset exhibits a more homogeneous
distribution. These differences underscore the intrinsic charac-
teristics and distinctiveness of each data type.
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Fig. 5. (a) GPS records’ volume for mobile navigation data and mobile
pedestrian data. (b) Distributions of time intervals between two consecutive
records.
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Fig. 6. Thermal distribution of roads. (a) Mobile navigation data, (b) Mobile
pedestrian data.

C. Preprocessing

We have processed the original crowdsensing data and
apply a spatial map-matching algorithm [32] to map the
trajectories to the road network, resulting in the generation
of the original estimated navigation speed data and pedestrian
speed data. To evaluate the road coverage afforded by different
datasets during the period from 8:00 AM to 8:30 AM, we
calculated the coverage statistics, which are delineated in

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3382729

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on July 27,2024 at 02:52:51 UTC from IEEE Xplore.  Restrictions apply. 



5

Road Network Trajectories

Map-Matching

Road Speed

Mobile Navigation 
Data

Mobile Pedestrian 
Data

Data 
Preprocess

Data 
Preprocess

Meta-learning-based  
Matrix Decomposition

Meta-learning-based  
Matrix Decomposition

𝑾

𝑯 𝑼,𝑽 𝑿

v

Se
lf-

vi
ew

 S
pe

ed
 

A
gg

re
ga

tio
n

E
m

be
dd

in
g 

L
ay

er

Multilayer 
Perceptron

High-resolution Traffic 
Speed Estimation in 
Large-scale Areas

External Data

(a) (b) (c)

-α

¢ ¢12 0e > e

¢ ¢13 0e < e
¢ ¢14 0e < e

1v

hLoss tLoss

U Vg , g + +U ,V
1r

2r

3r

4r

¢0e : threshold

𝑿 '𝑿 𝑽

'𝒀 '𝒀!

Fig. 7. System framework. (a) is the structure of data preprocessing. (b) is the detailed structure of meta-learning-based matrix decomposition. The meta-
learning process of the weighing matrix composes of two forward-backward passes. It firstly uses history speed matrix H to compute the weighted loss. Then
gradient on U, V is computed from Lossh to update the matrix decomposition function for one gradient step. The speed target matrix X and the updated
matrix decomposition function are used to compute Losst. At last, we update W by gradient-on-gradient on Losst. (c) is the example of self-view speed
aggregation which adaptively aggregates neighboring information.

Table II. Our analysis reveals that data from different sources
are dominant in different road sections, respectively, rather
than consistently outperforming each other in all situations.
In particular, the navigation data predominantly concentrates
on major thoroughfares, whereas the pedestrian data is more
uniformly dispersed, as evidenced in Fig. 3. Notably, Fig. 3
(a) represents the initial road network, Fig. 3 (b) and Fig. 3
(c) depict the covered areas derived from navigation data and
pedestrian data, respectively, where blue sections represent the
roads being passed. Further, Fig. 3 (d) and Fig. 3 (e) showcase
the amplified areas. These visualizations suggest that data
procured from varied sources possess the potential to mutually
enhance spatial and temporal coverage, as shown in Fig. 3
(f), where the red section represents independent sections in
a single data source. We observe the existence of uncovered
areas in both navigation and pedestrian data. Consequently, it
is imperative to first impute the missing data of each source
and subsequently integrate the multi-source imputed data.

Additionally, we have created thermal distribution plots for
both the navigation and pedestrian datasets, as illustrated in
Fig. 6. The intensity of the color corresponds to the level
of heat density in the area. It is observable that the thermal
variance is more pronounced across different regions in the
navigation dataset, whereas the pedestrian dataset demon-
strates a more consistent and homogenous distribution. The
efficient fusion of these two types of data holds the potential
to yield improved estimation results.

IV. METHODOLOGY

The proposed traffic speed estimation framework is illus-
trated in Fig. 7. Firstly, a meta-learning-based matrix decom-
position is designed to impute the missing speed data mostly in

TABLE II. Coverage performance comparison for different datasets from
8:00 AM to 8:30 AM.

Data type
Mobile

navigation
Mobile

pedestrian
Taxi

All roads 80.14% 81.52% 83.12%
Primary 92.26% 91.44% 96.25%

Secondary 87.65% 88.24% 93.24%
Tertiary 79.76% 83.49% 80.12%
Others 70.00% 70.79% 77.89%

consideration of temporal correlation, due to severe initial data
missing,. Upon acquiring the comprehensive set of imputed
data, we introduce a self-view speed aggregation module
designed to employ spatial information for the correction of
imputed values. Finally, we fuse the multi-view imputed data
to effectively generate the final estimated speed in a large-
scale road network. The detailed methodology is introduced
in the following.

A. Meta-Learning-based Matrix Decomposition

Meta-learning algorithms have primarily been developed for
few-shot learning, focusing on data efficiency by facilitating
information transfer across related tasks [33] [34] and the
context of learning to optimize [35] [36]. Gradient-based
meta-learning and hyperparameter optimization [37] has been
proved effective to solve a bilevel optimization problem. In
this paper, we aim to find the proper weights of history data
during matrix decomposition instead of manually setting fixed
parameters or through grid-search which is time-consuming
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and difficult to find the optimal value. The methodology of em-
ploying historical data to address the issue of missing data via
updates to the weight matrix and matrix decomposition is in
harmony with the principles of gradient-based meta-learning.
Consequently, we take advantage of the meta-learning algo-
rithm to learn from historical data and automatically assign
weights to different training examples according to their sig-
nificance, as shown in Fig. 7(b). The meta-learning process for
the weighted matrix utilizes a gradient-on-gradient approach,
which propagates gradients from a target loss incurred in
current matrix decomposition to the weighted matrix, thereby
learning from historical data.

We infer the missing traffic speed data on particular road
segments at specific time intervals by a target speed matrix
X ∈ Rm×n. The spatial dimension indicates specific spatial
road segments, where m is the number of road segments
that have been recorded. The temporal dimension indicates
the specific time intervals (e.g., a 5-min time interval from
0:00 AM to 0:05 AM), where n is the number of continuous
observation time intervals. Each entry in X indicates the mean
speed in a spatial road segment m during a time interval n
of the day. We introduce mask matrix M ∈ Rm×n to indicate
the missing entries of X:

Mi,j =

{
1, if Xi,j is available
0, if Xi,j is missing.

(1)

A common approach to impute the missing data is decom-
posing the matrix into two matrices. For example, we can
decompose X into the multiplication of U ∈ Rm×q and
V ∈ Rn×q and recover the complete speed matrix X̂ ∈ Rm×n

by introducing UVT :

min
U,V

1

2

∥∥M ⊙ (X − UVT )
∥∥2 + λ ∥U∥2 + λ ∥V∥2 (2)

X̂ = M ⊙ X + (1− M)⊙ UVT (3)

where ⊙ denotes element-wise multiplication, ∥·∥2 denotes the
L2 norm, λ ∥U∥2 + λ ∥V∥2 is a regularization of penalties to
avoid over-fitting, q denotes the number of latent factors which
is smaller than m,n , and λ is a parameter controlling the
contributions of the regularization. However, in our situation,
the matrix is over sparse at a large scale. For example, if we set
5 minutes as a time interval, only 25.5% and 23.2% entries
of X are available on navigation and pedestrian speed data
separately, which leads to unsatisfied performance.

As a result, we use historical data over a long period (e.g.,
one week) to establish the history speed matrix H ∈ Rm×n,
which provides additional information for our decomposition,
i.e., traffic patterns in the road network. An entry in H
indicates the mean speed in a spatial road segment m during
a time interval n in historical records. We introduce another
mask matrix N ∈ Rm×n to indicate the missing entries of H:

Ni,j =

{
1, if Hi,j is available
0, if Hi,j is missing.

(4)

We define a weighting matrix W ∈ Rm×n to measure the
importance of each entry in H. Then, we obtain the complete
speed matrix X̂ by decomposing X with H, W, M, and N.

Specifically, X̂ will be trained with the unweighted loss on
target speed matrix X and weighted loss on history speed
matrix H, W will be trained by meta-learning using gradient-
on-gradient.

We first decompose X into U and V, as mentioned in
Equ.(2) to obtain an initialization for the following training.
We aim to give more weight to history speed data with similar
speed patterns of the day. Thus we set the weighted loss
function as:

Lossh(W) =
1

2

∥∥W ⊙ N ⊙
(
H − UVT

)∥∥2
+λ∥U∥2 + λ∥V∥2

(5)

The loss on history speed data can be regarded as a function
of W, and we take the derivative of Lossh(W with respect to
U and V ):

gU(W) =
∂Lossh(W)

∂U
(6)

gV(W) =
∂Lossh(W)

∂V
(7)

U, V is then updated by one gradient descent with learning
rate α:

U+(W) = U − αgU(W) (8)

V+(W) = U − αgV(W) (9)

Meta-learning algorithm is closely related to the learn-to-
learn idea, which updates the parameters in the former task
for the further new tasks. We argue that the learning of the
weighting matrix should only minimize the loss on the target
speed data to reduce the decomposition loss in the last step.
As a result, we construct a loss by a forward pass on matrix
decomposition with the target speed data based on U+ and
V+:

Losst(W) =
1

2

∥∥M ⊙ (X − U+(V+)T )
∥∥2

+λ
∥∥U+

∥∥2 + λ
∥∥V+

∥∥2 (10)

Then, we compute the derivative of Losst(W) with respect to
W by gradient-on-gradient and update W with learning rate
β:

gW =
∂ Losst(W)

∂W
=

∂ Losst(W)

∂U+(W)

∂U+(W)

∂W

+
∂ Losst(W)

∂V+(W)

∂V+(W)

∂W

(11)

W+ = W − βgW (12)

After iteratively updating, we access a well-learned weight-
ing matrix W, we can impute the missing data using both the
target speed data X and the history speed data H. We adopt
the function for training the matrix decomposition module as:

min
U,V

1

2

∥∥M ⊙ (X − UVT )
∥∥2 + 1

2

∥∥W ⊙ N ⊙
(
H − UVT

)∥∥2
+λ ∥U∥2 + λ ∥V∥2

(13)

Finally, we approximate the desired complete matrix as men-
tioned in Equ.(3).
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B. Speed Aggregation with Imputed Data

Although we have obtained the imputed data from the
previous section, the quality of imputed data is uncertain,
and simply fusing the multi-source data might lead to an
undesirable result. Therefore, this section proposed a self-
view speed aggregate module and multi-view speed aggregate
module to output the estimated speed effectively.

1) Self-View Speed Aggregation: We are unable to ascer-
tain spatial correlations from sparse data until fully imputed
datasets are obtained. Once the imputation is complete, it
becomes feasible to evaluate whether the velocity of the central
road segment aligns with the speed fluctuations of its adjacent
roads. In this section, we use self-view speed aggregation to
further improve the quality of data estimation based on the
spatial relationship between adjacent road segments.

Spatial dependencies exist between road segments in the
road network, where the states of roads are influenced by
the surrounding. For example, if a traffic accident occurs
in the surrounding road segments, the flow of the center
road segment would possibly increase, resulting in slower
traffic speed. We calculate the euclidean distance between any
two roads’ speed lists and the geographical distance between
corresponding road segments. Fig. 8 shows the correlation
between the road spatial distance and the road speed dif-
ference. The closer the geographical distance of the road
segments, the greater the speed similarity; in the meantime,
the farther the distance, the greater the difference. As a result,
we adopt a self-view speed aggregation module to capture the
spatial correlation between neighboring roads. It aggregates
the central road speed with its adjacent road speed, which
correlates highly to the central road.
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Fig. 8. Spatial speed correlation of road segments in the network: (a) Mobile
navigation data, (b) Mobile pedestrian data.

Instead of setting the fixed coefficient of neighboring roads
and equally aggregating neighboring roads’ speed, we inno-
vatively improve the effectiveness by dynamically adjusting
the dependencies between roads. We use history speed data to
quantify the spatial dependencies between roads. Firstly, we
impute the missing data in H to obtain the complete history
speed data Ĥ ∈ Rm×n by matrix decomposition similar to
Equ.(2) and Equ.(3). To extract the diverse spatial correlation,
the spatial dependencies e′ij between the road segment ri and
road segment rj can be formulated as:

e′ij =
√∑

(Ĥi,: − Ĥj,:)2 j ∈ Ni (14)

where Ni is the set of neighboring connected roads for the ri
that shares the common intersection with it.

If the historical speed trend of adjacent connecting roads
differs significantly from the historical speed of the central
road, we consider that the correlation between these two roads
is small. Thus the central road does not require any information
from unnecessary adjacent connecting roads. It would retain its
existing information rather than permanently fuse neighboring
information:

eij =

{
+∞, e′ij > threshold
e′ij , e′ij ≤ threshold (15)

where eij indicates the adjusted spatial speed dependence
between the ri and rj . The threshold is defined as the upper
quartile in e′.

We perform consistency processing on the adjusted spatial
speed dependence, and then reassign the dependence weights
of each road segment. The magnitude of the dependence
between a specific center road section and its surrounding
bordering road sections may be significant. However, we
assign weights based on the relative magnitude of the values
rather than their absolute magnitude. This approach prevents
inaccuracies that may arise from changes in the numerical
scale. We have the explicit formulation of the weighted fusion
coefficient aij computed as:

aij =
exp (−eij/k)∑

j=Ni
exp (−eij/k) + ε

(16)

where k represents a scalar, and we introduce ε = 10−7

to avoid overflow. We obtain the weighted fusion coefficient
through measuring the proportion of dependency between each
road segment and the central road segment to all adjacent road
segments. The higher the proportion, the closer the relationship
between the two road sections in reality.

The aggregation step outputs the self aggregated speed
V ∈ Rm×n, which sticks to useful neighbor information and
keeps information itself at the same time instead of absolutely
depending on surrounding:

Vi,: = (1−
∑
j=Ni

aij
2
) ∗ X̂i,: +

∑
j=Ni

aij
2

∗ X̂j,: (17)

2) Multi-View Speed Aggregation: Multi-view speed aggre-
gation module aims to fuse multi-view imputed speed data
and output the final results. We have already received the
adjusted navigation speed data Vd ∈ Rmd×n and pedestrian
speed data Vw ∈ Rmw×n, where md is the number of road
segments traveled in navigation data and mw is in pedestrian
data. We intend to simultaneously combine adjusted navigation
speed data and pedestrian speed data to get the final estimated
traffic speed V̂ ∈ Rma×n, which improves the spatial coverage
and the accuracy of traffic speed estimation, where ma is
the number of road segments traveled in navigation data or
pedestrian data that ma = md ∪mw.

Firstly, we expand the two-dimensional speed matrix Vd

and Vw into one-dimensional vector vd ∈ R(md×n)×1 and
vw ∈ R(mw×n)×1. Except for the feature of speed value, we
denote Fd ∈ R(md×n)×2, Fw ∈ R(mw×n)×2 as additional
feature matrices, where 2 is the number of additional features.
We select the timestamp and whether the speed is imputed as
additional features since the speed change is closely related
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Fig. 9. Speed distribution of different road types.

to the current timestamp that the overall speed during peak
hours is slower. In addition, the performance of the two
data modalities fluctuates across various time intervals. For
instance, the volume of mobile pedestrian data in the early
morning is comparatively limited, which consequently affects
the relative quality of estimation. Accordingly, during the
fusion process, the weighting assigned to such data diminishes
during these periods. Further, we default that the imputed
data has lower reliability than the data directly obtained from
sensors, thus, the relative proportion in the fusion will be
lower. In reality, over 70% of the dataset is missing. As a
result, although the experimental protocol may assign a greater
weight to authentic data, it will not cause the imputed data to
lose its effectiveness. To facilitate the follow-up training, we
extend the horizontal axis dimension of vectors and matrices
by ma × n, where the extra filling values are 0.

Since the additional feature is discrete variable, the imple-
mentation needs to convert it into a set of one hot vectors. Then
we introduce an embedding layer for mapping concatenated
additional features to continuous number vector features:

H = Onehot(Concat(Fd,Fw)) (18)

Z = WH (19)

W is the weighting matrix and Z ∈ R(ma×n)×e, where e is the
number of projected latent features in the embedding layer.

Finally, the embedding features are concatenated with con-
tinuous speed features, which are later fed into a Multilayer
Perceptron (MLP) that consists of three linear transformations
adopting 3,2,1 neurons for each with a ReLU activation in
between:

Ŷ = MLP (Concat(Z, vd, vw)) (20)

where Ŷ ∈ R(ma×n)×1 is the fusion speed.
At last, we correct the estimated speed by the external

factor (i.e., road type). According to historical data, we can
easily obtain the velocity distribution of each type of road
shown in Fig. 9. We regard the velocity distribution as a
normal distribution approximately with the expectation µ and
variance σ of each type of road. It is almost impossible that
the particular speed is outside the range (µ ± 1.960σ, 95%)
[38] [39]. As a result, if the speed of a specific road segment
is out of range, we correct the speed to be consistent with the
distribution and output the final desired estimated traffic speed
Ŷ

′
∈ R(ma×n)×1.

V. EXPERIMENT RESULT

In this section, we conduct a comprehensive performance
evaluation to thoroughly validate the proposed speed esti-
mation model using real-world datasets. Furthermore, we
compare the performance of our model with that of state-of-
the-art methods to establish its effectiveness and superiority.

In the experiment, we divide a single day into 288 time-
episodes (with a time interval of 5 minutes). We observe
that data coverage fluctuates considerably at various times
throughout the day. Notably, the navigation data maintains
stability around the busiest periods, whereas the pedestrian
data demonstrates extensive coverage during peak hours but
undergoes a marked decline post-peak. Fig. 10(a)-(b) depict
the coverage variance of tertiary roads by the two data modal-
ities during morning and evening rush hours. In Fig. 10(c)-
(d), pie charts are employed to depict the coverage number
of road segments within the dataset, with the intersecting
central section denoting the quantity of road segments that are
jointly encompassed by both data types. The graph indicates
that during the morning peak hours, the navigation data
encompasses a greater number of roads, whereas the coverage
is more extensive in the pedestrian data at noon. Consequently,
navigation and pedestrian data exhibit mutual complementary
at distinct temporal junctures.
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Fig. 10. (a)-(b) Data coverage difference at tertiary roads. (c) Data coverage
difference at 8:00 AM. (d) Data coverage difference at 12:00 PM.

A. Measures of Effectiveness

We employ the taxi data encompass trajectories of more
than 3000 taxies in the city of Wenzhou during the same
period from March 21, 2020, to March 28, 2020, as the ground
truth, which is a practice common to the majority of extant
methods. The real-time location of each taxi is collected and
recorded at 20-second intervals, generating over 10 million
GPS records each day. Taxi data encompasses a substantial
portion of road segments, and we will compare the results
with the road segments with taxi data.

In this paper, we employ three measures of effectiveness to
conduct a quantitatively evaluation of the performance of our
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TABLE III. Performance comparison for different data imputation methods.

Results comparison on different data

Models
Mobile navigation data Mobile pedestrian data

MAE RMSE MAPE MAE RMSE MAPE

Unprocessed 8.538 11.242 28.134 9.223 12.043 30.990
Interpolate 8.830 11.745 29.016 9.470 12.396 31.430

KNNImputer 8.543 11.312 27.757 9.282 12.138 30.698
GAIN 8.941 12.078 29.108 10.315 13.875 33.094
LRTC 8.590 11.235 30.261 9.150 11.881 32.616
GAIN 8.941 12.078 29.108 10.315 13.875 33.094
SAITS 10.336 13.997 33.403 10.217 13.941 32.648

LRMC-ILM 8.463 11.255 27.509 9.072 11.920 29.924

Proposed method 8.186 10.828 26.690 8.812 11.521 29.014

TABLE IV. Performance comparison for different data fusion methods.

Models MAE RMSE MAPE

WMA 7.896 10.459 25.706
IMVC 7.635 10.197 25.340
LR 7.467 10.094 25.901
GBDT 7.345 9.740 25.779

Proposed method 7.320 9.837 23.877

proposed algorithm against other benchmark methods. We test
the model with Mean absolute percentage error (MAPE) as:

MAPE =
100%

n

n∑
i=1

|ŷi − yi|
yi

(21)

where ŷi is the estimated speed value, yi is the verified real
speed value provided by taxi GPS data as ground truth and n
is the number of all estimated values.

To further evaluate the performance of the model, we also
provide Mean absolute error (MAE) and Root Mean Squared
Error (RMSE) as compared:

MAE =

∑n
i=1 |ŷi − yi|

n
, (22)

RMSE =

√∑n
i=1(ŷi − yi)2

n
. (23)

Specifically, MAPE utilizes percentages to measure the de-
viation, making it less susceptible to the influence of extreme
values, and it does not need to be combined with the dimension
of real value to judge the difference.

B. Missing Data Imputation

The data imputation algorithm described in Section IV is
employed to impute the missing speed data for road segments
that have records on March 28, 2020. To augment the model
with additional speed pattern insights, historical data from both
navigation and pedestrian sources covering March 21, 2020,
to March 27, 2020, are utilized. The observed spatial-temporal
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Fig. 11. Visualization of spatial-temporal missing data imputation effect: (a)
From top to bottom are mobile navigation data with missing value, historical
mobile navigation data and imputed mobile navigation data. (b) From top
to bottom are mobile pedestrian data with missing value, historical mobile
pedestrian data and imputed mobile data.

missing rates in the navigation and pedestrian datasets are
74.5% and 76.8%, respectively, over the entire day. Remark-
ably, after data imputation, the spatial-temporal coverage rates
in the navigation and pedestrian datasets surged from 25.5%,
23.2% to 100%, 100% each. This suggests that through the
data imputation algorithm, we can estimate the speed of road
segments as long as they are recorded in the historical data(i.e.,
large-scale urban traffic speed estimation), thereby enhancing
coverage.

To be specific, we set the learning rate α to 1e− 4 and the
value of β to 1e − 4. The Adam optimizer is utilized with
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β1 = 0.9 and β2 = 0.999. Initially, we pretrain the normal
matrix decomposition for 10K steps to ensure a favorable
initialization. Subsequently the meta-learning process for the
weighting matrix is executed for 30,000 epochs. Finally, we
train the meta-learning-based matrix decomposition for 10K
steps. The performance is compared with five other state-of-
the-art imputation methods:

• SAITS [40] is based on the self-attention mechanism for
missing value imputation in multivariate time series.

• LRMC-ILM [20], the Improved Low-rank Minimization
problem in matrix completion, attends to impute the
missing speed data with consideration to nonlinear spatial
and temporal correlations.

• LRTC [41], low-rank tensor completion, improves single-
source data by constructing a 3D tensor and performing
context-aware decomposition.

• GAIN [42] adapts the well-known GAN model to min-
imize the difference between the original and imputed
data.

• Interpolation imputation [43] based on data distribution.
• KNN Imputation [44] selects k nearest neighbors for each

missing data via calculating the gray distance between the
missing datum to iteratively imputes missing data.

Our proposed approach demonstrates marked superiority
relative to each benchmark method across all metrics within
both the navigation and pedestrian datasets. Significantly, we
note an enhancement in performance during morning and
evening peak periods, attributed largely to the profusion of
record data available. Conversely, during the early hours and
late night, the efficacy of the approach is somewhat dimin-
ished, attributable to the paucity of data during these intervals.

Further, we visualize the efficacy of our proposed model
in imputing missing spatial-temporal data. Fig. 11 presents,
from top to bottom, datasets with missing values, historical
data, and imputed data, in that order. The figure delineates
500 randomly selected road segments on the x-axis and 12h
time steps, corresponding from 8AM to 8PM period, on the
y-axis. Among them, historical data represents the average
speed of a certain road segment at a certain time based on all
records in the past. There are situations where road segments
have no records in some time periods. In this depiction,
voids represent missing data while the intensity of the color
indicates the speed values. Fig. 11 reveals that the imputed data
effectively draws inspiration from historical data data but not
limited to historical data. Despite the richness of information
in historical datasets, they still can do not provide complete
coverage. Our data imputation method improves the dataset
based on historical data and actual situations. The imputed
data aligns well with the actual road conditions, i.e., segments
with historically higher speeds also exhibit correspondingly
elevated imputed speeds. Nevertheless, our proposed model
effectively capture the speed pattern knowledge even under
sever data scarcity conditions, enabling accurate speed data
imputation for any road at any time, related to high-resolution
estimation goal.

C. Multi-Source Data Fusion
In this section, we utilize a speed aggregation algorithm

to estimate the traffic speed using the recovered data. The
timeframe for the current study period and the historical
information period employed herein aligns with the interval
utilized for data imputation in the previous sections
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Fig. 12. Comparison of estimation performance under various hops in MAPE:
(a) Mobile navigation data, (b) Mobile pedestrian data.
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Fig. 13. Comparison of estimation performance under various types of roads
in MAPE.

Fig. 12 illustrates the enhanced performance achieved
through the utilization of the self-view speed aggregation
module. The proposed self-view speed aggregation module
demonstrates a remarkable improvement in accuracy, with
a minimum increase of 8.29% and 8.02% in MAPE for
both navigation data and pedestrian data. The improvement
is particularly evident during periods of abundant data. It is
obvious that road segments within a one-hop range exhibit a
high degree of inter-connectivity with the central road sec-
tion. Thus, leveraging the neighboring segments’ information
can significantly improve the estimation of the central road
segment.

Furthermore, we conducted a comparison of the aggrega-
tion effect with different hops of neighboring information.
Interestingly, we observed that with the increase of integrated
information, the aggregation effect may either decline or
exhibit only marginal improvements. Hence, in this study, we
aggregate one-hop neighbors’ information, which adequately
captures the correlation between road segments.

To demonstrate the performance of the multi-view Speed
aggregation module, we randomly partitioned the data from
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Fig. 14. Performance comparisons over the proposed model and its variants: (a) in MAPE, (b) in MAE and (c) in RMSE.
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Fig. 15. MAPE performance in various weighing matrices settings: (a) Mobile
navigation data, (b) Mobile pedestrian data.

March 28, 2020, into training and testing sets. The module
utilized 3,2 and 1 neurons for each MLP layer. We compared
the performance of several benchmark models in this section
as well:

• Weighted mean approach(WMA) [27] sets the weight
according to the error of a single data source to fuse
multi sources data.

• Iterative multi-view calibration(IMVC) [41] integrates
multi-source data by quantifying biases of data sources
and minimizes loss by an iterative learning process.

• Linear regression(LR) [45] adapts the well-known GAN
model to minimize the difference between the original
and imputed data.

• Gradient Boosting Decision Tree(GBDT) [46] mines the
relationship between multi sources data and constructs
decision tree to integrate multi sources data.

D. Model Sensitivity Analysis
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Fig. 16. Comparison of imputation performance under different data missing
rate in MAPE: (a) Mobile navigation data, (b) Mobile pedestrian data.

Table IV presents a comprehensive overview of the concrete
performance results. It can be concluded that the proposed

model outperforms the other models under evaluation. The
speed aggregation algorithm effectively mitigates data un-
certainty and successfully captures the dependencies present
among the multi-source data.

Fig. 13 provides a comparison of the estimation perfor-
mance across different types of roads in terms of MAPE.
It is worth noting that while maintaining high-resolution
estimation, the speed estimation accuracy for side roads is
slightly lower compared to that of main roads.

In order to validate the effectiveness of the meta-learning
process for the weighting matrix, we compare its performance
with that of artificially setting the weighting matrix in Fig. 15
(a) and Fig. 15 (b). The results demonstrate that our proposed
module effectively learns the intrinsic relationships within the
data. It is able to assign higher weights to credible history data,
facilitating the imputation process in allocating its attention to
different data.

Furthermore, we conducted a comparative analysis of our
missing data imputation module against the most competitive
model, considering different data missing rates. Fig. 16 depicts
the performance of algorithms as the missing rates increase. It
shows that even though the performance of algorithms fluctu-
ates as missing rates increase, our proposed model consistently
outperforms which demonstrates the robustness and reliability
of our algorithm.

E. Ablation Study

To verify effectiveness of different modules and the nec-
essary of introducing multi-source crowdsensing data, we
perform ablation studies with four variants::

• W/O navigation: W/O navigation is a variant of our
proposed model, where the navigation data is removed.

• W/O pedestrian: W/O pedestrian is a variant of our
proposed model, where the pedestrian data is removed.

• W/O neighbor: W/O neighbor is a variant of our pro-
posed model, where the speed aggregation module is
removed.

• W/O external: W/O external is a variant of our proposed
model, where we ignore the external factors.

The outcomes are delineated in Fig. 14. We corroborate
the advantages of harnessing multi-source crowdsensing data
as opposed to relying on a singular data source. Crucially,
our findings demonstrate that the integration of multi-source
data does not lead to over-fitting issues but rather enhances
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the reliability of the information obtained. We subjected the
single data source to the entire model in separate instances
and observed a precipitous decline in output performance. The
results affirm the evident advantage of our proposed modules,
which effectively capture the spatial correlation between roads
and significantly enhance the quality of the data.

VI. CONCLUSION

In this study, we address the enduring challenges of coarse-
grained traffic speed estimation methods traditionally used, by
introducing an innovative data-driven approach that leverages
multi-source implicit crowdsensing data derived from smart-
phones. By integrating mobile navigation data with mobile
pedestrian data, which is incidentally collected from roadside
pedestrians when vehicle WiFi signals are scanned by phones,
we achieve high-resolution, large-scale traffic speed estimation
without necessitating additional costly deployments. To further
refine the gathered data, we employ a meta-learning-based
matrix decomposition module to impute missing speed data for
road segments.Then a self-view speed aggregation algorithm is
proposed to utilize the complete spatial information to correct
the imputed values. Additionally, we have devised a speed
aggregation module to fuse the multi-source recovered data,
effectively mitigating uncertainties. To corroborate the efficacy
of our approach, comprehensive experiments were conducted
with real-world datasets from the city of Wenzhou. The
simulation outcomes demonstrate substantial improvements
over extant methodologies, evidencing a 7.48% enhancement
in data imputation and a 6.99% advancement in data fusion.
Looking to the future, we aim to integrate semantic content
from geographic information systems and real-time social
media data to further augment the estimation accuracy in
subsequent studies.
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